
Sparse Matrix Vector
Multiplication
Speaker: Jia-Ming Lin

Outline

● Sparse Matrix Vector Multiplication and Applications

● Compressed Row Storage(CRS)

● Baseline implementation

● C/RTL Cosimulation

● Loop Optimization

● Labs

2

Sparse Matrix Vector Multiplication and Applications

● Sparse Matrix Vector Multiplication(SpMV)

0 1.2 0 0 0

0 0 0.6 0.7 0.5

0 0 0 1.2 1.1

0 0.5 1.5 0 0.7

0 0 0.8 0 0

2

1

3

0

1

1.2

2.3

1.1

5.7

2.4

● Zero value does not contribute to
the result of vector product

● Discarding the zero values

○ Saving storage

○ Reducing # of mul and add.

● How to store the sparse matrix?

● How to perform multiplication?

○ Without converting to dense
matrix-vector multiply

3

Sparse Matrix Vector Multiplication and Applications

● Application: Neural Network Compression

Matrix vector
multiplication

Ignore values under
a threshold

(supress to zero)

SpMV

● Large number of values(near to zero)
can be discarded.

○ Without sacrificing much accuracy.

4

Compressed Row Storage(CRS)

● Example

0 1.2 0 0 0

0 0 0.6 0.7 0.5

0 0 0 0 1.1

0 0.5 1.5 0 0.7

0 0 0.8 0 0

1.2 0.6 0.7 0.5 1.1 0.5 1.5 0.7 0.8

1 2 3 4 4 1 2 4 2

0 1 4 5 8 9

2D Dense Matrix Representation

Column Index

Values

Row Pointer

● Comparison(storage saving)
○ 2D Dense Matrix(left): 4 bytes * 25 = 100 bytes
○ CRS(right): 4 bytes * 9 + 1 byte * (9+6) = 51 bytes

5

Compressed Row Storage(CRS)

● Example: given 2D matrix, converting to CRS

0 1.2 0 0 0

0 0 0.6 0.7 0.5

0 0 0 0 1.1

0 0.5 1.5 0 0.7

0 0 0.8 0 0

1.2

1

0

2D Dense Matrix Representation

Column Index

Values

Row Pointer

● Scanning in a Row-Major manner.
● Put the non-zero(NZ) value in the “Values” array
● Record the column index of NZ
● Initialize the array of “Row Pointer” of length “#Row” +1

○ First element is zero, no NZ before first row.
6

Compressed Row Storage(CRS)

● Example: given 2D matrix, converting to CRS

0 1.2 0 0 0

0 0 0.6 0.7 0.5

0 0 0 0 1.1

0 0.5 1.5 0 0.7

0 0 0.8 0 0

1.2 0.6

1 2

0 1

2D Dense Matrix Representation

Column Index

Values

Row Pointer

● Scanning in a Row-Major manner.
● Put the non-zero(NZ) value in the “Values” array
● Record the column index of NZ
● “Row Pointer”: 1 NZ before second row.

7

Compressed Row Storage(CRS)

● Example: Given CRS, converting to 2D Matrix

1.2 0.6 0.7 0.5 1.1 0.5 1.5 0.7 0.8

1 2 3 4 4 1 2 4 2

0 1 4 5 8 9

2D Dense Matrix Representation

Column Index(cIndx)

Values(vals)

Row Pointer(rowPtr)

● How many NZ in a row? rowPtr[i+1] - rowPrt[i]

● What is the column indexes of NZs in a row? cIndx[rowPtr[i]...(rowPtr[i+1]-1)]

● What is the values of NZs in a row? vals[rowPtr[i]...(rowPtr[i+1]-1)]

Row 0

Row 1

Row 2

Row 3

Row 4

8

Compressed Row Storage(CRS)

● Example: Given CRS, converting to 2D Matrix

0 0.5 1.5 0 0.7

1.2 0.6 0.7 0.5 1.1 0.5 1.5 0.7 0.8

1 2 3 4 4 1 2 4 2

0 1 4 5 8 9

2D Dense Matrix Representation

Column Index(cIndx)

Values(vals)

Row Pointer(rowPtr)

● How many NZ in a Row 3? rowPtr[3+1] - rowPrt[3] = 8 - 5 = 3

● What is the column indexes of the NZs? cIndx[rowPtr[3]...(rowPtr[3+1]-1)] = cIndx[5...7] = [1,2,4]

● What is the values of NZs in a row? vals[rowPtr[3]...(rowPtr[3+1]-1)] = vals[5...7] = [0.5, 1.5, 0.7]

Row 0

Row 1

Row 2

Row 3

Row 4

9

Baseline Implementation

● Given CRS and vector X[N]
○ Compute Y[N]

● To compute Y[n], needs Row n * X[N]

● Previously, we have seen how to obtain “Row n” from CRS

○ With NZ column indexes and values

● Using the NZ column indexes to retrieve corresponding values in X[N]

● Obtaining result Y[n] by only looking at the operations of NZs.

● Refer lab for the HLS code.

10

● Example: To compute Y[3]
● In Row 3

○ NZ values = [0.5, 1.5, 0.7]
○ NZ column index = [1, 2, 4]

● Corresponding operands in X[N]
○ X[1], X[2], X[4]

● Y[3] = 0.5*X[1] + 1.5*X[2] + 0.7*X[4]
 = 0.5*1 + 1.5*3 + 0.7*1 = 5.7

● Reduced Operations(mul and add)
○ Mul: 5 → 3, Add: 4 → 2

X

Baseline Implementation

11

C/RTL Cosimulation

● In the “Synthesis” report, latency is unknown.
○ Since for every Y[n], loop length is unknown (depends on data)

● Two methods to evaluate performance,
○ Using Directive “loop_tripcount”
○ Doing C/RTL Cosimulation

12

Directive “loop_tripcount”

● To specifying the loop length manually.
● Needs to know the behaviors of program very well.

1. Open the
“Directive” tab

2. Right click on L2
loop

3. Switch the drop down
list to
“LOOP_TRIPCOUNT”

4. Specifying the
number of loop length
manually

5. Re-run “Synthesis” 13

● Simulation using the converted RTL code
● Input data from test bench in C
● Performance evaluation and result validation

C/RTL Cosimulation

Test Bench Click to using C/RTL
Cosimulation

14

Loop Optimization

● Case 1: Pipeline the loop L1
● Case 2: Pipeline the loop L2
● Case 3: Pipeline/Unroll the loop L2
● Case 4: Splitting L2 and partially unroll manually

15

● Case 1: Pipeline loop L1

○ Fully unrolling the loop L2

○ However, the length of loop L2 is unknown and variable loop is not supported in Vivado HLS.

○ This optimization does not have any effect.

Loop Optimization

16

● Case 2: Pipeline the loop L2

Loop Optimization

● Sequentially perform mul and add

17

● Case 3: Pipeline/Unroll the loop L2
○ Increasing the parallelism by unrolling L2

Loop Optimization

Comparing Case 2 and Case 3
● Latency for Case 2 = 82 cycles
● Latency for Case 3 = 96 cycles

Long chain of operation dependencies

18

Loop Optimization

● Case 4: Splitting L2 and partially unroll manually

Comparing to Case 3:

● (Pros)Recurrence only on final
accumulation

● (Pros)Less Initial Interval for case
4

○ Case 3: 15; case 4: 5

● (Cons) Deeper pipeline

○ Longer latency for single
task 19

Loop Optimization

● Case 4: Splitting L2 and partially unroll manually

Comparing to Case 2:

● (Pros) More parallelism

● (Cons) resources are tend to be
wasted in very sparse cases

○ Ex. for a row with only one
NZ, 2 multiplier are wasted.

20

Summarize

● Exploit sparsity in matrix operation

○ Reduce # of operations

○ Reduce required storages

● Loop optimization for a spatial(irregular) data structure

○ Serialize and pipeline the calculations of Y[n], that is case 2: pipeline L2

■ More suitable for very sparse case

○ Partially parallelize(unroll) the calculations of Y[n], that is case 3 and 4: partially unroll for L2

■ More suitable for the cases with more NZ elements.

21

Labs

● Goal: find a case of sparse matrix, such that “Case 4” can perform better than
“Case 2”

○ Download baseline and case 4 files

○ C simulation, validating using C

○ C/RTL cosimulation, performance evaluation using given test bench

○ Using loop optimization, Case 2 and Case 4

○ Modifying the test bench and using C/RTL cosimulation again

22

https://drive.google.com/file/d/1nLWIdjn4-_p6xHPoayAoJxJl-uvG9zZw/view?usp=sharing
https://drive.google.com/file/d/1kIDSb1d19SsC1Oll_J4qXssiy7APksj0/view?usp=sharing

